Using Bikeshare Data to Understand Bicycle Traffic in Kelowna

Liza Wood
Mohsen Zardadi

Who We Are

Liza Wood, P.Eng twohat

Director, Research and Data Science Two Hat Security

Mohsen Zardadi, Ph.D.
Data Scientist
Terrasense Analytics

Agenda

- Introduction
- Project Goal
- Data and Challenges
- Analysis
- Tools
- Finding Routes
- Counting Bikeshare Trips
- Evaluation of Path-Finding Models
- Estimation of Average Daily Bicycle traffic
- Final Visualization
- Conclusion

Project Goal

Using the bikeshare and Eco-Counter data, estimate and visualize the Average Daily Bicycling (ADB) volumes for downtown Kelowna.

ADB by segment produced by combining GPS and counter data, Montreal

Data and Challenges

- 2018 Dropbike Bikeshare Pilot
- Dockless bikeshare - 3 months
- Latitude, Longitude, Timestamp for each trip
- Cleaned data: 8,853 trips

Challenge: GPS Low Resolution, Low Accuracy

- Eco-Counters

Challenge: Low bikeshare count compared to counters

Data and Challenges

Analysis Tools

- QGIS
- Visualization
- R
- Statistical Analysis
- OSMnx Python Library
- OpenStreetMap and Networkx
- Turns the map into a graph
- Each street is an edge
- Each intersection is a node
- Algorithms to calculate distances and paths

Finding Routes: Snap GPS Points To Graph

- Found nearest node in the graph for each GPS point
- Removed GPS points that are at least 150 m far away of the calculated nearest node
- Removed any trips with less than three points

This left us with 8815 trips and 95905 GPS points.

Finding Routes: Connect The Points

Source: Wikipedia

- OSMnx calculates shortest path between nodes based on given numerical weights for each edge
- Tried 8 different path-finding models based on:
- Distance
- Route Type Preference
- Road configuration

Counting Bikeshare Trips

Evaluation of Path-Finding Models

Criteria:

- Visual
- Speed
- Percentage split Eco-Counter loc
- Linear regressio Counter data vs data at City Par

Winner:

- Shortest distan

Estimation of ADB: Differences In Traffic

Ethel Traffic: Bikeshare

Ethel Traffic: Counter

City Park Traffic: Bikeshare

City Park Traffic: Counter

Estimation of ADB: Approach

Least Squares Optimization

- Find a single multiplier (\boldsymbol{m}) such that:

$$
m \times \text { bikeshare }=\text { counter }
$$

- Minimize the following equation across counters:

$$
\begin{aligned}
f(x) & =\Sigma\left((m \times \text { bikeshare }- \text { counter })^{2} \times \text { split }\right) \\
m & =159
\end{aligned}
$$

- Calculate ADB for each segment:

$$
A D B=(m \times \text { bikeshare }) / 91
$$

Final Visualization

Conclusions

- Using OSMnx to apply graph theory gave us the mapping and pathfinding tools needed.
- The best path-finding model was shortest distance between points.
- Traffic patterns are different at each counter.
- Bikeshare traffic is different from overall traffic recorded by the counters.
- Least squares optimization gave us an estimate of ADB.
- Total count of bikeshare trips used for understanding how bikeshare users cycled through the network.

Thank You!

Questions?

Acknowledgements

Marzi Rafieenia - Project Team Member

City of Kelowna:

- Matt Worona
- Kamil Rogowski

UBCO:

- Dr. Scott Fazackerley
- Dr. Khalad Hasan
- Dr. John Braun
- Dr. Heinz Bauschke
- Joyce Epp (TA)
- Matt Fritter (TA)
- Jiachen Wei (QGIS expertise)

Academic Papers Cited:

- Boeing, G. (2017). OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks. Computers, Environment and Urban Systems, 65, 126-139
- Strauss, J. (2015). New Methods for Modeling and Integrating Bicycle Activity and Injury Risk in an Urban Road Network. Montreal: McGill University
- Winters, M., \& Teschke, K. (2010). Route Preferences Among Adults in the Near Market for Bicycling: Findings of the Cycling in Cities Study. The Science of Health Promotion, 40-47.

City of
Kelowna

UBC THE UNIVERSITY OF BRITISH COLUMBIA苛菏

